
Data Mining - Decision Tree Induction

Decision Tree

A decision tree is a structure that includes a root node, branches, and leaf nodes. Each internal node denotes a test on an attribute, each branch denotes the *outcome* of a test, and each *leaf node* holds a *class label*. The topmost node in the tree is the root node.

The following decision tree is for the concept buy_computer that indicates whether a customer at a company is likely to buy a computer or not. Each internal node represents a test on an attribute. Each leaf node represents a class.

Decision Tree Induction Algorithm

Generating a decision tree form training tuples of data partition D Algorithm : Generate_decision_tree

Input

Data partition, D, which is a set of training tuples and their associated class labels. attribute_list, the set of candidate attributes. Attribute selection method, a procedure to determine the splitting criterion that best partitions that the data tuples into individual classes. This criterion includes a splitting_attribute and either a splitting point or splitting subset.

Output: A Decision Tree

Method

create a node N; if tuples in D are all of the same class, C then return N as leaf node labelled with class C; if attribute list is empty then return N as leaf node with labelled with majority class in D; | | majority voting apply attribute_selection_method(D, attribute list) to find the best splitting criterion; label node N with splitting criterion; if splitting attribute is discrete-valued and multiway splits allowed then // no restricted to binary trees

attribute list = splitting attribute; // remove splitting attribute for each outcome j of splitting criterion

// partition the tuples and grow subtrees for each partition
let Dj be the set of data tuples in D satisfying outcome j; // a partition
if Dj is empty then

attach a leaf labelled with the majority class in D to node N;

else

attach the node returned by Generate decision tree(Dj, attribute list) to node N; end for return N; **Tree Pruning**

Tree pruning is performed in order to remove anomalies in the training data due to noise or outliers. The pruned trees are smaller and less complex.

Tree Pruning Approaches There are two approaches to prune a tree –

- Pre-pruning The tree is pruned by halting its construction early.
- **Post-pruning** This approach removes a sub-tree from a fully grown tree.

Cost Complexity The cost complexity is measured by the following two parameters –

• Number of leaves in the tree and

Next class Bayesian Classification

Thank You